HC-search for Incremental Parsing

Yijia Liu, Wanxiang Che, Bing Qin, and Ting Liu

Standard Incremental Parsing

Two Types of Errors

Goal: learning a function S to give oracle sequence highest score Learning scheme:

- \circ do beam search on input
- if an error is made (*highest sequence* != *oracle sequence*):
 - increase weight for oracle sequence
 - o decrease weight for highest sequence

HC-search for Incremental Parsing

HC-search: Doppa et al., 2014:

- o structure prediction error is decomposed into two parts
 - \circ \mathcal{H} euristic part: the gold structure not included in the set of outputs
 - $\circ~\mathcal{C}ost$ part: the gold structure not ranked as the highest output

 $\mathcal{E}_{\mathcal{HC}} = L(x, y_{\mathcal{H}}^*, y^*) + L(x, \hat{y}, y^*) - L(x, y_{\mathcal{H}}^*, y^*),$

a function **S** services a **dual-role**:

- keeping oracle sequence in beam (reduce second type errors)
- o scoring gold tree highest (reduce first type errors)

Our Method

- $\circ~$ Decompose S into two functions ${\mathcal H}$ and ${\mathcal C}$
 - $\circ~$ Goal of $\mathcal{H}:$ include oracle sequence in the output
 - \circ Goal of \mathcal{C} : rank the gold tree highest
- Handling the ambiguous problem
 - $\circ \ \mathcal{H}$ not necessarily rank oracle sequence highest

H-step learning scheme

- o do beam search on input
- if oracle sequence falls out beam:
 - o increase weight for oracle sequence
 - o pick a sequence from beam and decrease its weight
 - We tried pick the <u>BEST</u> scored and <u>WORST</u> scored

C-step learning scheme

- o a typical ranking problem
 - o <u>COARSE</u> grain ranking: rank the smallest loss outputs higher than the rest

Two roles sometimes conflict, serving them with single function **S** is problematic

Experiments

Parser	PTB			CTB5			
	Dev	Test	SPD	Dev	Test	SPD	
BASELINE	92.95	92.48	1x	86.76	86.44	1x	
Best+Fine	93.13	92.76 (+0.28)	1.25x	87.25	87.04 (+0.60)	1.08x	
Best+Coarse	92.94	92.44 (-0.04)	1.30x	86.61	86.51 (+0.07)	1.07x	
WORST+FINE	93.12	92.73 (+0.25)	1.33x	87.27	87.15 (+0.71)	1.22x	
WORST+COARSE	92.89	92.47 (-0.01)	1.30x	86.95	86.82 (+0.38)	1.20x	
BASELINE+FINE	93.06	92.53 (+0.05)		87.07	86.70 (+0.26)		

Results on PTB, CTB5 with beam=64, HC-decomposition improves performance

• *FINE* grain ranking: rank the smaller loss outputs higher

Conclusion: We proposed a new approach for incremental parsing based on the HC-search framework. H-step uncovers high-quality candidate outputs and C-step selects the best loss output with a ranking model.

Best+Fine	3.69	3.90	6.87	8.77	5.72	12.75
Best+Coarse		4.14	7.06		6.93	13.39
WORST+FINE	3.05	4.62	6.88	7.75	7.33	12.73
WORST+COARSE		5.09	7.11		7.58	13.05
BASELINE+FINE	3.70	4.10	6.94	8.81	6.27	12.93

Error Decomposition Analysis: Relaxed H-step learning objective ☑recall more high-quality output ☑increase difficulty of ranking

Parser	non-mixture	mixture			
BASELINE	92.48				
BASELINE+FINE	92.53	92.94			
Best+Fine	92.76	93.02			
WORST+FINE	92.73	93.05			

Improvement can be further achieved by mixing H- and C- step scores.