$\mathbb{I R}$

Standard Incremental Parsing

like reading

Learning scheme：

Goal：learning a function S to give oracle sequence highest score
－do beam search on input
－if an error is made（highest sequence ！＝oracle sequence）：
－increase weight for oracle sequence
－decrease weight for highest sequence

HC－search for Incremental Parsing

HC－search：Doppa et al．，2014：
－structure prediction error is decomposed into two parts
－ \mathcal{H} euristic part：the gold structure not included in the set of outputs
－Cost part：the gold structure not ranked as the highest output

$$
\mathcal{E}_{\mathcal{H C}}=\underbrace{L\left(x, y_{\mathcal{H}}^{*}, y^{*}\right)}_{\epsilon_{\mathcal{H}}}+\underbrace{L\left(x, \hat{y}, y^{*}\right)-L\left(x, y_{\mathcal{H}}^{*}, y^{*}\right)}_{\epsilon_{\mathcal{C} \mid \mathcal{H}}},
$$

Our Method

－Decompose S into two functions \mathcal{H} and \mathcal{C}
－Goal of \mathcal{H} ：include oracle sequence in the output
－Goal of \mathcal{C} ：rank the gold tree highest
－Handling the ambiguous problem
－ \mathcal{H} not necessarily rank oracle sequence highest

H－step learning scheme

－do beam search on input
－if oracle sequence falls out beam：
－increase weight for oracle sequence
－pick a sequence from beam and decrease its weight
－We tried pick the BEST scored and WORST scored

C－step learning scheme

－a typical ranking problem
－COARSE grain ranking：rank the smallest loss outputs higher than the rest
－FINE grain ranking：rank the smaller loss outputs higher
like reading

Conclusion：We proposed a new approach for incremental parsing based on the HC－search framework．H－step uncovers high－quality candidate outputs and C－step selects the best loss output with a ranking model．

Two Types of Errors

oracle sequence falls out beam
a function \boldsymbol{S} services a dual－role：
－keeping oracle sequence in beam（reduce second type errors）
－scoring gold tree highest（reduce first type errors）

Ambiguity

Two roles sometimes conflict，serving them with single function \boldsymbol{S} is problematic

Experiments

Parser	PTB			CTB5		
	Dev	Test	SPD	Dev	Test	SPD
BasEline	92.95	92.48	1x	86.76	86.44	1x
Best＋Fine	93.13	92.76 （＋0．28）	1.25 x	87.25	87.04 （＋0．60）	1．08x
Best＋Coarse	92.94	92.44 （－0．04）	1．30x	86.61	86.51 （＋0．07）	1.07 x
Worstitine	93.12	92.73 （ +0.25$)$	1.33 x	87.27	87.15 （＋0．71）	1.22 x
Worst＋Coarse	92.89	92.47 （－0．01）	1．30x	86.95	86.82 （＋0．38）	1．20x
BASELINE＋FINE	93.06	92.53 （＋0．05）		87.07	86.70 （＋0．26）	

Results on PTB，CTB5 with beam＝64，HC－decomposition improves performance

Parser	PTB			CTB5		
	$\epsilon_{\mathcal{H}}$	$\epsilon_{\mathcal{C} \mid \mathcal{H}}$	$\mathcal{E}_{\mathcal{H C}}$	$\epsilon_{\mathcal{H}}$	$\epsilon_{\mathcal{C} \mid \mathcal{H}}$	$\mathcal{E}_{\mathcal{H} \mathcal{C}}$
BEST＋FINE	3.69	$\mathbf{3 . 9 0}$	$\mathbf{6 . 8 7}$	8.77	$\mathbf{5 . 7 2}$	12.75
BEST＋COARSE		4.14	7.06		6.93	13.39
WORST＋FINE	$\mathbf{3 . 0 5}$	4.62	6.88	$\mathbf{7 . 7 5}$	$\mathbf{7 . 3 3}$	$\mathbf{1 2 . 7 3}$
WORST＋COARSE		5.09	7.11		7.58	13.05
BASELINE＋FINE	3.70	4.10	6.94	8.81	6.27	12.93

Error Decomposition Analysis：Relaxed H－step learning objective Vrecall more high－quality output Vincrease difficulty of ranking

Parser	non－mixture	mixture
BASELINE	92.48	
BASELINE＋FINE	92.53	92.94
BEST＋FINE	92.76	93.02
WORST＋FINE	92.73	93.05

Improvement can be further achieved by mixing H －and C －step scores．

