Exploring Segment Representations for Neural Segmentation Models

Yijia Liu, Wanxiang Che, Jiang Guo, Bing Qin, and Ting Liu

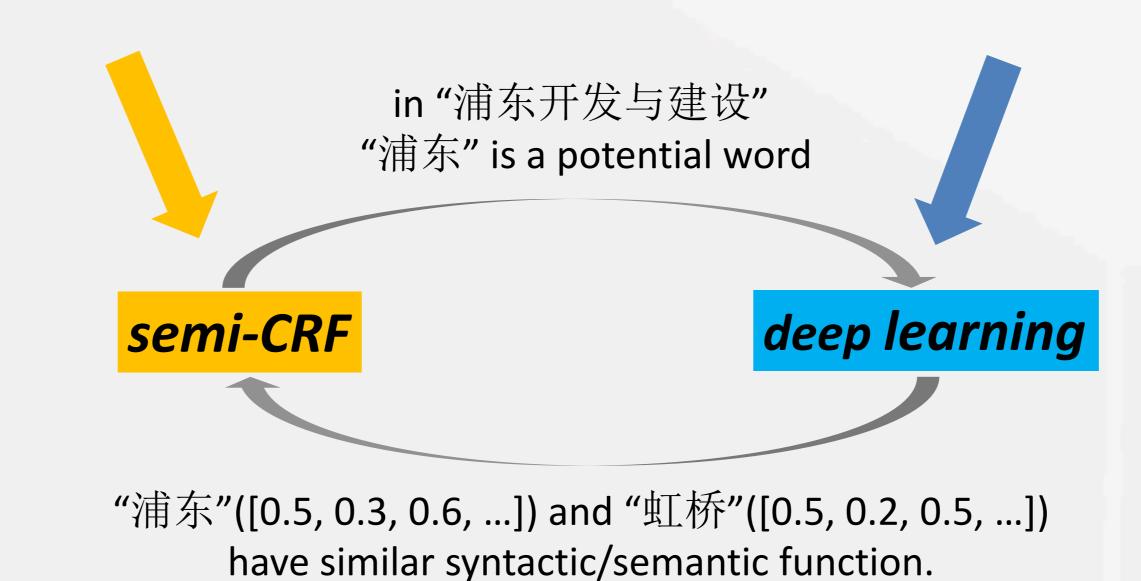
Michael Jordan is a professor at Berkeley

Use word embedding in CWS.

Challenges and Solutions

□access the segment

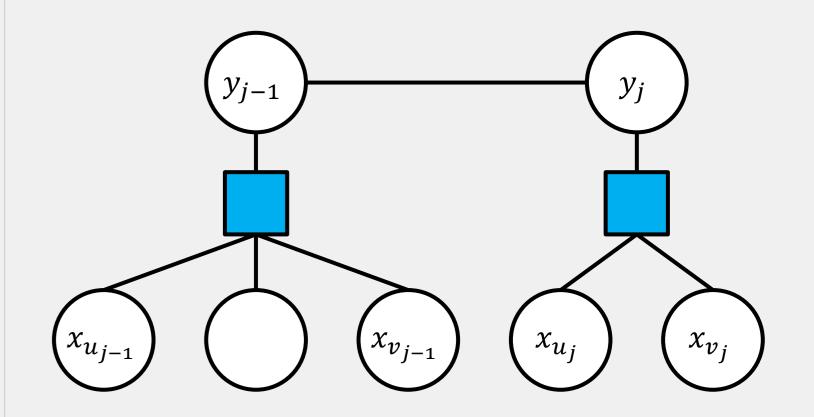
representing the segment


Semi-CRF vs. CRF

Modeling Segmentation • Markov assumption

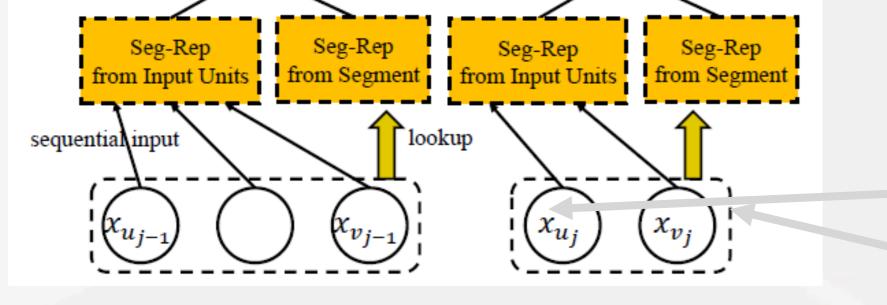
- *input*: a sequence of elements
- *segmentation*: a sequence of segment **S** =
 - $(s_1, s_2, ..., s_p)$
- *segment*: a tuple s = (u, v, y)
 - \circ *u*: the beginning position
 - \circ *v*: the ending position
 - \circ y : the label associated with the segment (optional)
- \circ constrained on $v_i + 1 = u_{i+1}$

 y_{j-1}

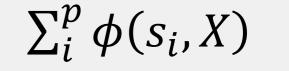


Representing $\phi(s_i, X)$

Old-school $\phi(s_i, X)$ representation

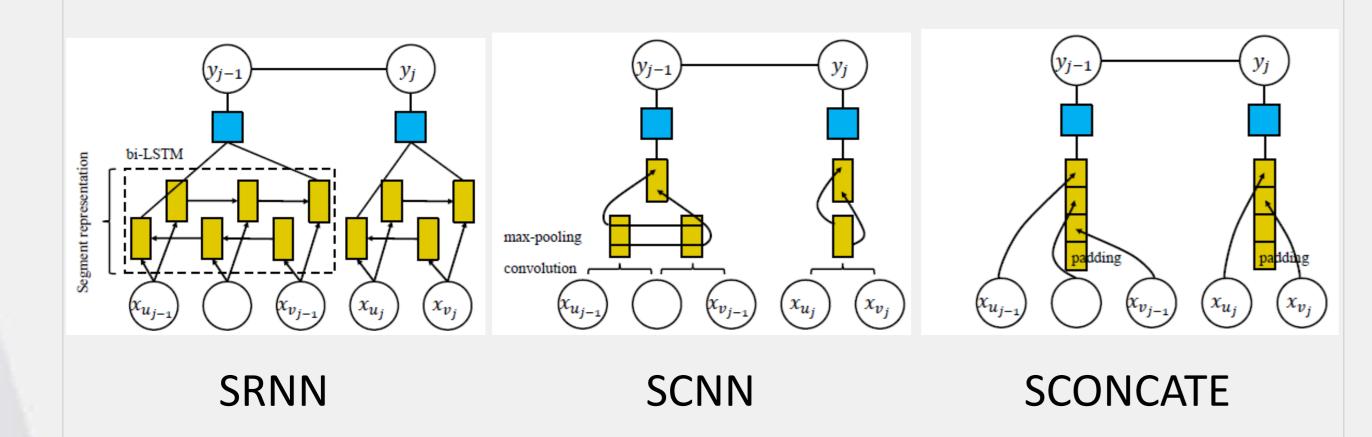

- *crf styled features:*
 - o input unit level information: e.g. words, postags
- *semi-crf styled features:*
- o segment-level information: e.g. segment length Neuralized $\phi(s_i, X)$ representation

- labeling individual inputs with B, I, E, S
- o one input, one state
- Semi-Markov assumption
 - labeling contiguous inputs
 - several inputs, one state


Semi-CRF

- follows semi-Markov assumption
- conditional probability of segmentation S over input x $\circ p(S|X) = \frac{1}{z} \exp W \Phi(S,X)$ • $\Phi(S, X)$: decomposed as

Model Overview


- *crf styled features:*
 - composing input units representation into a vector
- *semi-crf styled features:*
- embedding the entire segment

Core Problem Representing $\phi(s_i, X)$

Seg-Rep from Input Units

Experiments

Results of *Seg-Rep from Input Units* only: comparable result with baseline

	NER		ER	CWS						
		CoNLL03		CTB6 P		PK	KU M		SR	
	model	dev	test	dev	test	dev	test	dev	test	spd
baseline	NN-LABELER	93.03	88.62	93.70	93.06	93.57	92.99	93.22	93.79	3.30
	NN-CRF	93.06	89.08	94.33	93.65	94.09	93.28	93.81	94.17	2.72
	SPARSE-CRF	88.87	83.43	95.68	95.08	95.85	95.06	96.09	96.54	
neural semi-CRF	SRNN	92.97	88.63	94.56	94.06	94.86	93.91	94.38	95.21	0.62
	SCONCATE	92.96	89.07	94.34	93.96	94.41	93.57	94.05	94.53	1.08
	SCNN	91.53	87.68	87.82	87.51	79.64	80.75	85.04	85.79	1.46

Seg-Rep from Segment

Where did the embedding come from? learning from unlabeled but auto-segmented data auto-data: homogeneous or heterogeneous models? embedding: tune or fixed? Ο

Results of *Seg-Rep from Input Units and Segment*: Segment embedding significant helps!

CoNLL03	CTB6	PKU	MSR	genre	model	CTB6	PKU	MSR
88.62	93.06	92.99	93.79		[Zheng et al., 2013]	-	92.4	93.3
89.08	93.65	93.28	94.17	NN	[Pei et al., 2014]		94.0	94.9
83.43	95.08	95.06	96.54	111	[Pei et al., 2014] w/bigram	-	95.2	97.2
88.63	94.06	93.91	95.21		[Kong et al., 2015]		90.6	90.7
89.59	95.48	95.60	97.39		[Tseng, 2005]	-	95.0	96.4
+0.96	+1.42	+1.69	+2.18	non-NN	[Zhang and Clark, 2007]	-	95.1	97.2
89.07	93.96	93.57	94.53	non-iviv	[Sun et al., 2009]	-	95.2	97.3
89.77	95.42	95.67	97.58		[Wang et al., 2011]	95.7	-	-
+0.70	+1.43	+2.10	+3.05	our best		95.48	95.67	97.58
	88.62 89.08 83.43 88.63 89.59 +0.96 89.07 89.07 89.77	88.62 93.06 89.08 93.65 83.43 95.08 88.63 94.06 89.59 95.48 +0.96 +1.42 89.07 93.96 89.77 95.42	88.62 93.06 92.99 89.08 93.65 93.28 83.43 95.08 95.06 88.63 94.06 93.91 89.59 95.48 95.60 +0.96 +1.42 +1.69 89.07 93.96 93.57 89.77 95.42 95.67	88.62 93.06 92.99 93.79 89.08 93.65 93.28 94.17 83.43 95.08 95.06 96.54 88.63 94.06 93.91 95.21 89.59 95.48 95.60 97.39 +0.96 +1.42 +1.69 +2.18 89.07 93.96 93.57 94.53 89.77 95.42 95.67 97.58	88.62 93.06 92.99 93.79 89.08 93.65 93.28 94.17 83.43 95.08 95.06 96.54 88.63 94.06 93.91 95.21 89.59 95.48 95.60 97.39 +0.96 +1.42 +1.69 +2.18 89.07 93.96 93.57 94.53 89.77 95.42 95.67 97.58	88.62 93.06 92.99 93.79 89.08 93.65 93.28 94.17 83.43 95.08 95.06 96.54 88.63 94.06 93.91 95.21 89.59 95.48 95.60 97.39 +0.96 +1.42 +1.69 +2.18 89.07 93.96 93.57 94.53 89.77 95.42 95.67 97.58	88.62 93.06 92.99 93.79 89.08 93.65 93.28 94.17 83.43 95.08 95.06 96.54 88.63 94.06 93.91 95.21 89.59 95.48 95.60 97.39 +0.96 +1.42 +1.69 +2.18 89.07 93.96 93.57 94.53 89.77 95.42 95.67 97.58	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Conclusion: we thoroughly study representing the segment in neural semi-CRF. Segment embedding greatly improve the performance