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Problem:
Natural Language Segmentation Problem
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Problem:
Natural Language Segmentation Problem

* input is a sequence of elements
* segmentation is a sequence of
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* u: the beginning position
BARFAESER W BF5/ ARk / 5/ B# * v:the ending position
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* y: the label associated with the
segment (optional)

* constrainedonv; +1 = u;, 4
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Motivating:
Can we use word embedding in CWS?
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Motivating:
Can we use word embedding in CWS?

* To achieve this gold, we need
e to access the segment (the potential word) during inference
* to represent the segment
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Refresh on semi-CRF

* semi-CRF model the conditional probability of S as
. p(S|X) = %exp W (S, X)
* by restricting features within one certain segment, ®(S, X) can be
decomposed as Zf d(s;, X)

 core problem in achieving good segment performance

Representing ¢ (s;, X)
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(Old-school) ¢(s;, X) representation

e crf styled features:
* input unit level information
e e.g.: character

» semi-crf styled features:
* segment-level information
e e.g.: length of the segment

* require carefully designed features and do not generalize well
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Neuralized ¢ (s;, X) representing

* neural crf styled features:
e composing the representation of input units into a vector
* handling variable length nature

* neural semi-crf styled features:
 embed the entire segment
* learning from labeled/unlabeled data
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Composing Input Units

* neural crf styled features: SCOMP; = Net(x,, Xyi1, ) Xyp)

e composing the representation of input units into a vector
* handling variable length nature

Segment representation
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Embedding Entire Segment

* neural semi-crf styled features: SEMB; = lookup(x, X, 11 .- Xy)
 embed the entire segment
* learning from raw text

* Problem: where did the embedding come from?
* Answer: learning from unlabeled but auto-segmented data
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Final Model
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Experiments

* Two typical NLP segmentation tasks: NER and CWS
* NER: CoNLL2003
* CWS: Sighan2005

* Baselines:
* sparse feature CRF
* neural sequence labeling
* neural CRF

Harbin Institute of Technology

Research Center for o =
Social Computing and Information Retrieval ~ [l=i+"%

_——



w/ Input Units Composition only

NER CWS
CoNLLO3 CTB6 PKU MSR
NN-LABELER 03.03 88.62 | 93.70 9306 9357 9299 0322 9379 | 3.30
asetline - . . . . . . . .
SPARSE-CRF 8887 8343 | 95.68 95.08 9585 95.06 96.09 96.54
SRNN 0297 88.63 | 9456 94.06 948 9391 9438 9521 | 0.62
neural semi-CRF SCONCATE 0296 89.07 | 94.34 9396 9441 9357 9405 9453 | 1.08
SCNN 01.53 87.68 | 87.82 8751 79.64 80.75 85.04 85.79 | 1.46

e structure predication models outperform classification

 but difference is not significant within structure models
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w/

embedding

nput Units Composition + segment

* Using segment-level representation greatly improve the performance

model CoNLLO3 | CTB6 PKU MSR
NN-LABELER 88.62 93.06 9299 93.79
NN-CRF 89.08 93.65 93.28 94.17
SPARSE-CRF 83.43 95.08 95.06 96.54
SRNN 88.63 94.06 93.91 95.21
+SEMB-HETERO 89.59 9548 95.60 97.39
+0.96 +1.42 +1.69 +2.18

R SCONCATE || 89.07 | 93.96 93.57 94.53
+SEMB-HETERO 89.77 9542  95.67 97.58
+0.70 +1.43 +2.10 +3.05
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Final Result (compare w/ NER SOTA)

* achieve comparable performance without domain-specific knowledge

genre model || CoNLLO3

[Collobert et al., 2011] 89.59
[Huang et al., 2015] 90.10

NN

[Ando and Zhang, 2005] 89.31
non-NN [Guo et al., 2014] 88.58
[Passos ef al., 2014] 90.90

our best 89.77
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Final Result (compare w/ CWS SOTA)

e achieve SOTA on two datasets

genre model || CTB6 PKU MSR

|Zheng et al., 2013] - 92.4 93.3

NN [Pei et al., 2014] 94.0 94.9

[Pei et al., 2014] w/bigram - 952 97.2

[Kong et al., 2015] 90.6  90.7
N [Tseng, 2005] || - 95.0 96.4

non-NN [Zhang and Clark, 2007] - 95.1 97.2

[Sun et al., 2009] - 95.2 97.3

[Wang et al., 2011] || 95.7 - -
our best || 9548 95.67 97.58
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Conclusion

* We thoroughly study representing the segment in neural semi-CRF
 SCONCATE is comparable with SRNN
* Segment embedding greatly improve the performance

e Qur code can be found at: https://github.com/ExpResults/segrep-for-
nn-semicrf

* Talk to me at the poster for more details
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https://github.com/ExpResults/segrep-for-nn-semicrf

Thanks and Questions!
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