Exploring Segment Representations for Neural Segmentation Models

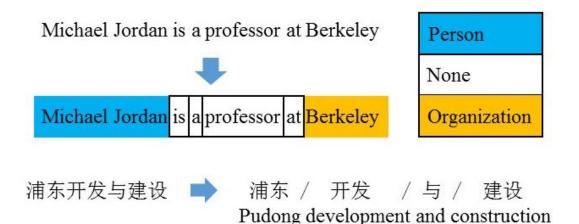
Yijia Liu, Wanxiang Che, Jiang Guo, Bing Qin, and Ting Liu

Research Center for Social Computing and Information Retrieval

Harbin Institute of Technology

Problem: Natural Language Segmentation Problem

Problem: Natural Language Segmentation Problem

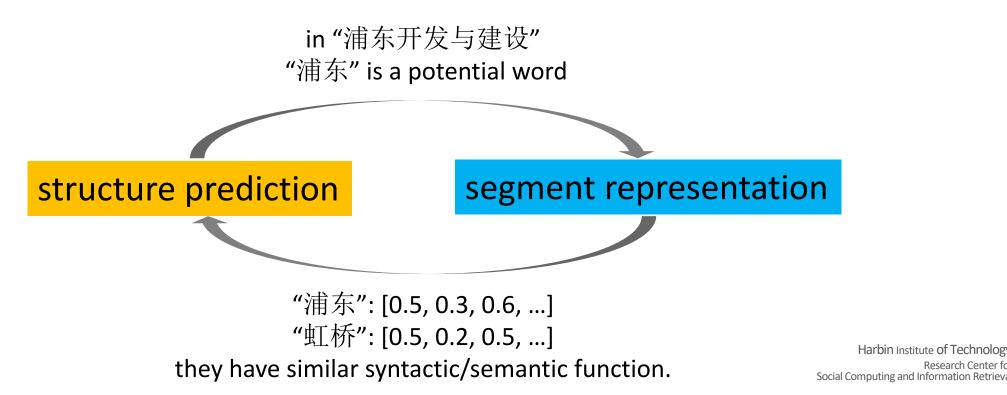


• *input* is a sequence of elements

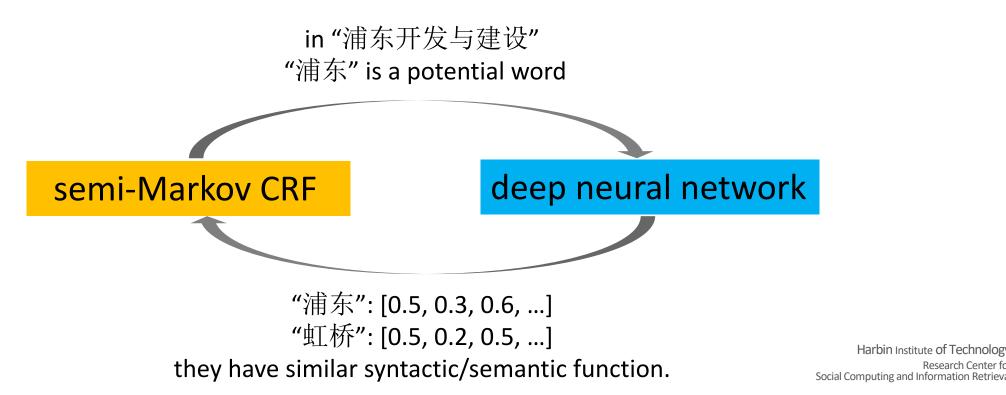
- segmentation is a sequence of segment $\mathbf{S} = (s_1, s_2, \dots, s_p)$
- a *segment* is a tuple s =
 (u, v, y)
 - *u*: the beginning position
 - v: the ending position
 - y: the label associated with the segment (optional)
- constrained on $v_i + 1 = u_{i+1}$

- To achieve this gold, we need
 - to access the segment (the potential word) during inference
 - to represent the segment

- To achieve this gold, we need
 - to access the segment (the potential word) during inference
 - to represent the segment



- To achieve this gold, we need
 - to access the segment (the potential word) during inference
 - to represent the segment



Refresh on semi-CRF

• semi-CRF model the conditional probability of S as

• $p(S|X) = \frac{1}{Z} \exp W\Phi(S,X)$

- by restricting features within one certain segment, $\Phi(S, X)$ can be decomposed as $\sum_{i}^{p} \phi(s_{i}, X)$
- core problem in achieving good segment performance

Representing $\phi(s_i, X)$

(Old-school) $\phi(s_i, X)$ representation

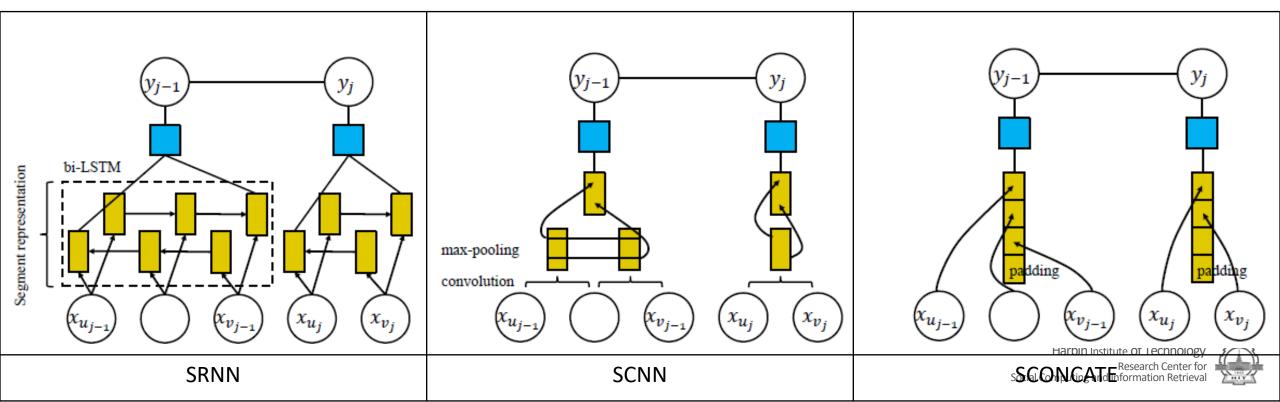
- crf styled features:
 - input unit level information
 - e.g.: character
- semi-crf styled features:
 - segment-level information
 - e.g.: length of the segment
- require carefully designed features and do not generalize well

Neuralized $\phi(s_i, X)$ representing

- neural crf styled features:
 - composing the representation of input units into a vector
 - handling variable length nature
- neural semi-crf styled features:
 - embed the entire segment
 - learning from labeled/unlabeled data

Composing Input Units

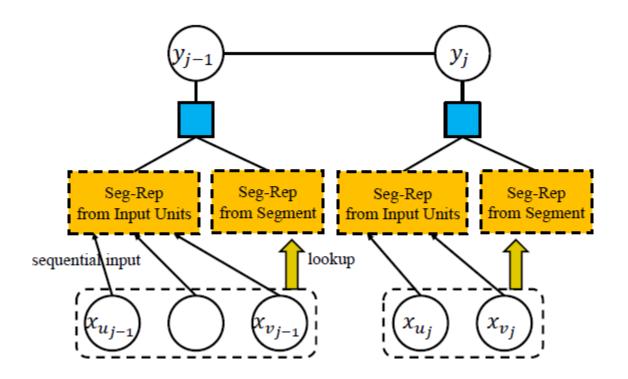
- neural crf styled features: $SCOMP_i = Net(x_u, x_{u+1}, ..., x_v)$
 - composing the representation of input units into a vector
 - handling variable length nature



Embedding Entire Segment

- neural semi-crf styled features: $SEMB_i = lookup(x_u x_{u+1} \dots x_v)$
 - embed the entire segment
 - learning from raw text
- Problem: where did the embedding come from?
- Answer: learning from unlabeled but auto-segmented data

Final Model



Experiments

- Two typical NLP segmentation tasks: NER and CWS
 - NER: CoNLL2003
 - CWS: Sighan2005
- Baselines:
 - sparse feature CRF
 - neural sequence labeling
 - neural CRF

w/ Input Units Composition only

		NER		CWS						
		CoNLL03		CTB6		PKU		MSR		
	model	dev	test	dev	test	dev	test	dev	test	spd
	NN-LABELER	93.03	88.62	93.70	93.06	93.57	92.99	93.22	93.79	3.30
baseline	NN-CRF	93.06	89.08	94.33	93.65	94.09	93.28	93.81	94.17	2.72
	SPARSE-CRF	88.87	83.43	95.68	95.08	95.85	95.06	96.09	96.54	
	SRNN	92.97	88.63	94.56	94.06	94.86	93.91	94.38	95.21	0.62
neural semi-CRF	SCONCATE	92.96	89.07	94.34	93.96	94.41	93.57	94.05	94.53	1.08
	SCNN	91.53	87.68	87.82	87.51	79.64	80.75	85.04	85.79	1.46

• structure predication models outperform classification

• but difference is not significant within structure models

w/Input Units Composition + segment embedding

• Using segment-level representation greatly improve the performance

model	CoNLL03	CTB6	PKU	MSR
NN-LABELER	88.62	93.06	92.99	93.79
NN-CRF	89.08	93.65	93.28	94.17
SPARSE-CRF	83.43	95.08	95.06	96.54
SRNN	88.63	94.06	93.91	95.21
+SEMB-HETERO	89.59	95.48	95.60	97.39
	+0.96	+1.42	+1.69	+2.18
SCONCATE	89.07	93.96	93.57	94.53
+SEMB-HETERO	89.77	95.42	95.67	97.58
	+0.70	+1.43	+2.10	+3.05

Final Result (compare w/ NER SOTA)

• achieve comparable performance without domain-specific knowledge

genre	model	CoNLL03
NN	[Collobert <i>et al.</i> , 2011]	89.59
1111	[Huang et al., 2015]	90.10
	[Ando and Zhang, 2005]	89.31
non-NN	[Guo et al., 2014]	88.58
	[Passos et al., 2014]	90.90
	our best	89.77

Final Result (compare w/ CWS SOTA)

achieve SOTA on two datasets

genre	model	CTB6	PKU	MSR
NN	[Zheng et al., 2013]	-	92.4	93.3
	[Pei et al., 2014]		94.0	94.9
	[Pei et al., 2014] w/bigram	-	95.2	97.2
	[Kong et al., 2015]		90.6	90.7
non-NN	[Tseng, 2005]	-	95.0	96.4
	[Zhang and Clark, 2007]	-	95.1	97.2
	[Sun et al., 2009]	-	95.2	97.3
	[Wang et al., 2011]	95.7	-	-
	our best	95.48	95.67	97.58

Harbin Institute of Technolog

Social Computing and Information Retrieval

Conclusion

- We thoroughly study representing the segment in neural semi-CRF
- SCONCATE is comparable with SRNN
- Segment embedding greatly improve the performance
- Our code can be found at: <u>https://github.com/ExpResults/segrep-for-nn-semicrf</u>
- Talk to me at the poster for more details

Thanks and Questions!

