

Distilling Knowledge for Search-based Structured Prediction

Yijia Liu*, Wanxiang Che, Huaipeng Zhao, Bing Qin, Ting Liu Research Center for Social Computing and Information Retrieval Harbin Institute of Technology

Complex Model Wins

Towards Better UD Parsing: Deep Contextualized Word Embeddings, Ensemble, and Treebank Concatenation

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng, Ting Liu

Classification vs. Structured Prediction

Classification vs. Structured Prediction

Search-based Structured Prediction

$p(a \mid s)$ that Controls Search Process

Generic p(a | s) Learning Algorithm

Problems of the Generic Learning Algorithm

Problems of the Generic Learning Algorithm

Solutions in Previous Works

Where We Are

Knowledge Distillation

Learning from negative log-likelihood Learning from knowledge distillation

q(*y* | *I*, *like*) is the output distribution of a *teacher* model (e.g. ensemble)

Knowledge Distillation: from Where

Learning from knowledge distillation

Ambiguities in training data *Ensemble (Dietterich, 2000)* We use ensemble of M structure predictor as the *teacher q*

KD on Supervised (reference) Data

KD on Explored Data

Training and test discrepancy

Explore (Ross and Bagnell, 2010)

We use *teacher q* to explore the search space & learn from KD on the explored data

We combine KD on reference and explored data

 $D \leftarrow \emptyset;$ for $n \leftarrow 1...N$ do $t \leftarrow 0, s_t \leftarrow s_0(\mathbf{x}^{(n)});$ while $s_t \notin \mathcal{S}_T$ do if distilling from reference then $a_t \leftarrow \pi_{\mathcal{R}}(s_t, \mathbf{y}^{(n)});$ else $a_t \leftarrow \pi_{\mathcal{E}}(s_t);$ $\overset{\frown}{D} \leftarrow D \cup \{s_t\}, s_{t+1} \leftarrow \mathcal{T}(s_t, a_t), t \leftarrow t+1;$ if distilling from reference then optimize $\alpha \mathcal{L}_{KD} + (1 - \alpha) \mathcal{L}_{NLL};$ else optimize \mathcal{L}_{KD} ;

Experiments

Transition-based Dependency Parsing Penn Treebank (Stanford dependencies)	LAS	Neural Machine Translation IWSLT 2014 de-en	BLEU
Baseline	90.83	Baseline	22.79
Ensemble (20)	92.73	Ensemble (10)	26.26
Distill (reference, $\alpha = 1.0$)	91.99	Distill (reference, $\alpha = 0.8$)	24.76
Distill (exploration)	92.00	Distill (exploration)	24.64
Distill (both)	92.14	Distill (both)	25.44
Ballesteros et al. (2016) (dyn. oracle)	91.42	MIXER (Ranzato et al. 2015)	20.73
Andor et al. (2016) (local, B=1)	91.02	Wiseman and Rush (2016) (local B=1)	22.53
		Wiseman and Rush (2016) (global B=1)	23.83

Analysis: Why the Ensemble Works Better?

• Examining the ensemble on the "problematic" states.

Analysis: Why the Ensemble Works Better?

- Examining the ensemble on the "problematic" states.
- Testbed: *Transition-based dependency parsing*.
- Tools: **dynamic oracle**, which returns a set of reference actions for one state.
- Evaluate the output distributions against the reference actions.

	optimal-yet-ambiguous	non-optimal	
Baseline	68.59	89.59	
Ensemble	74.19	90.90	

Analysis: Is it Feasible to Fully Learn from KD w/o NLL?

Fully learning from KD is feasible

Analysis: Is Learning from KD Stable?

Conclusion

- We propose to distill an ensemble into a single model both from reference and exploration states.
- Experiments on transition-based dependency parsing and machine translation show that our distillation method significantly improves the single model's performance.
- Analysis gives empirically guarantee for our distillation method.

Thanks and Q/A