

An AMR Aligner Tuned by Transition-based Parser

Yijia Liu*, Wanxiang Che, Bo Zheng, Bing Qin, Ting Liu Research Center for Social Computing and Information Retrieval Harbin Institute of Technology

AMR Parsing: Concept Identification

AMR Parsing: Relation Identification

AMR Parsing: Alignment Challenge

exchange-01 Association between a concept and a span of words is abstracted away freeze-01 recieve-01 North Korean froze its nuclear actions in act-02 country reactor exchange for two nuclear reactors name nucleus~2 nucleus~1 name op2 opl "North" "Korea"

Aligner for Training an AMR Parser. Guessing Alignment

JAMR Aligner (Flanigan et al. 2014)

A Set of Rules

1. (Named Entity) Applies to name concepts and their opn children. Matches a span that exactly matches its opn children in numerical order.

2. (Fuzzy Named Entity) Applies to name concepts and their opn children. Matches a span that matches the fuzzy match of each child in numerical order.

3. (Date Entity) Applies to date-entity concepts and their day, month, year children (if exist). Matches any permutation of day, month, year, (two digit or four digit years), with or without spaces.

4. (**Minus Polarity Tokens**) Applies to – concepts, and matches "no", "not", "non."

5. (Single Concept) Applies to any concept. Strips off trailing '-[0-9]+' from the concept (for example

Greedy Decoding

- Manually define rule order
- Apply these rules one by one
- Alignments are mutually excluded, a span once aligned will never be aligned again.

Problems of JAMR

Our Contributions

Our Contributions

Our Aligner

Limited semantic resources

Recall more alignments with

- Glove embedding (Korean and Korea)
- morphological links (example and exemplify)

Ambiguities in matching results

Parser training does not feed back to alignment

Our Aligner

Limited semantic resources

Recall more alignments with

- Glove embedding (Korean and Korea)
- morphological links (example and exemplify)

Ambiguities in matching results

Parser training does not feed back to alignment

Our Aligner

Limited semantic resources:

Recall more alignments with

- Glove embedding (Korean and Korea)
- morphological links (example and exemplify)

Ambiguities in matching results

Parser training does not feed back to alignment

Produce multiple alignments

Oracle Transition-based Parser

- State: $s = (\sigma | s_0, \delta, b_0 | b_1 | \beta, A)$
- Actions:
 - extension of the list-based dependency parser
 - CONFIRM, ENTITY, and NEW for concept identification
 - Oracle parser use the alignment to derive these actions

Drop	$[\sigma \mathbf{s}_0, \delta, b_0 \beta, A]$	$[\sigma s_0, \delta, \beta, A]$
MERGE	$\begin{bmatrix} \overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0 \overline{ } \overline{b}_1 \overline{ } \overline{\beta}, \overline{A} \end{bmatrix}$	$\left[\sigma\left[s_{0}, \overline{\delta}, \overline{b_{0}}, \overline{b_{1}}\right]\beta, \overline{A}\right]^{$
¯ Confirm(c)¯	$[\bar{\sigma} \bar{s}_0, \bar{\delta}, \bar{b}_0]\bar{\beta}, \bar{A}]^{}$	$\left[\sigma[\mathbf{s}_{0}, \overline{\delta}, \mathbf{c}]\beta, \overline{A}\right]^{$
$\overline{E}\overline{NTITY}(\overline{c})$	$[\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0 \overline{\beta}, \overline{A}] = -$	$[\sigma[s_0, \overline{\delta}, \overline{c}]\beta, \overline{A} \cup \overline{relations(c)}]$
NĒw(c)	$\left[\overline{\sigma} \overline{s}_{0}, \overline{\delta}, \overline{b}_{0} \overline{\beta}, \overline{A}\right] = \overline{c}$	$[\sigma]s_0, \overline{\delta}, \overline{c}]b_0[\overline{\beta}, \overline{A}] = $
RIGHT(r)	$[\sigma \mathbf{s}_0,\delta,\mathbf{b}_0 \beta,A]$	$\begin{bmatrix} \sigma \mathbf{s}_0, \ \delta, \ \mathbf{b}_0 \beta, \ A \cup \{ \mathbf{s}_0 \xleftarrow{\mathbf{r}} \mathbf{b}_0 \} \end{bmatrix}$ $\begin{bmatrix} \sigma \mathbf{s}_0, \ \delta, \ \mathbf{b}_0 \beta, \ A \cup \{ \mathbf{s}_0 \xleftarrow{\mathbf{r}} \mathbf{b}_0 \} \end{bmatrix}$
	$\begin{bmatrix} \overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0 \overline{\beta}, \overline{A} \end{bmatrix} =$	
	$\begin{bmatrix} \overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0 \overline{\beta}, \overline{A} \end{bmatrix} = \begin{bmatrix} \overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0 \overline{\beta}, \overline{A} \end{bmatrix}$	

stack:	deque:	buffer:	
		North Korean froze its nuclear actions in exchange	for two nuclear reactors
		ENTITY (country) SHIFT	

Input sentence: North Korean froze its nuclear actions in exchange for two nuclear reactors

Input sentence: North Korean froze its nuclear actions in exchange for two nuclear reactors

Input sentence: North Korean froze its nuclear actions in exchange for two nuclear reactors

Input sentence: North Korean froze its nuclear actions in exchange for two nuclear reactors

Input sentence: North Korean froze its nuclear actions in exchange for two nuclear reactors

Input sentence: North Korean froze its nuclear actions in exchange for two nuclear reactors

Input sentence: North Korean froze its nuclear actions in exchange for two nuclear reactors

Input sentence: North Korean froze its nuclear actions in exchange for two nuclear reactors

Input sentence: North Korean froze its nuclear actions in exchange for two nuclear reactors

Input sentence: North Korean froze its nuclear actions in exchange for two nuclear reactors

Input sentence: North Korean froze its nuclear actions in exchange for two nuclear reactors

Input sentence: North Korean froze its nuclear actions in exchange for two nuclear reactors

Input sentence: North Korean froze its nuclear actions in exchange for two nuclear reactors

Input sentence: North Korean froze its nuclear actions in exchange for two nuclear reactors

buffer:
actions in exchange for two nuclear reactors

Ends up with a graph with Smatch of **0.91**

Input sentence: North Korean froze its nuclear actions in exchange for two nuclear reactors

Aligner Experiments (intrinsic): Alignment Evaluation

Aligner Experiments (extrinsic): Two Open-sourced AMR Parsers

On LDC2014T12

Aligner Experiments: Ablations

Our Contributions

Transition-based AMR Parser on Our Transition System

• Use StackLSTM [Dyer et al. 2015] to represent state

$$p(a|s) = \frac{\exp\{g_a \cdot \text{StackLSTM}(s) + b_a\}}{\sum_{a'} \exp\{g_{a'} \cdot \text{StackLSTM}(s) + b_{a'}\}}$$

• Call a unique subroutine for span-to-concept classification

Parser Experiments

Parser Experiments

Comparison to Ballesteros and Al-Onaizan (2017)

Parser Experiments: Speed Comparison

Model	Tokens/s
JAMR	7
CAMR	24
Wang17 (Extension of CAMR)	<24
Our (X10)	43

Conclusion

- A new AMR aligner that improves two open-sourced parsers
- A transition-based parser that is accurate and fast
- Code and generated alignments (LDC2014T12 and LDC2017T10) are available at: https://github.com/Oneplus/tamr

Thanks and Q/A