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Overview of Our Techniques

• Rank 1st according to LAS

• Baseline model: Dozat et al.
(2017)

• Winning strategies:
• ELMo: +0.84

• Ensemble: +0.55

• Treebank Concat.: +0.42
(estimated on Dev set.)



Our Extension to Dozat et al. (2017)
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Two Extensions on AllenNLP ELMo

• Supporting Unicode range

• Training with sample softmax
• use a window of 8192 surrounding words as negative samples

• More stable training and better performance

• One language takes 3 days on Nvida P100



Other Techniques that Contributes

• Improved POS tagging:
• Ranked 2nd in the UPOS evaluation (1st on the big treebanks)

• Biaffine tagger + ELMo

• Improved tokenization:
• Ranked 2nd in the Tokenization-F1 evaluation

• BiLSTM sequence labeling + unigram character ELMo

• Wins in zh_gsd (+6.6), ja_gsd (+4.1), vi_vtb (+7.2), ja_morden (+9.7)



Effects of ELMo:
Improvements on Gold Segmentation
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Effects of ELMo:
OOV Rate against Improvements



Effects of ELMo:

ELMo’s Effects on IV and OOV
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Effects of ELMo:

Better OOV Abstraction



Conclusion

• We made several improvements including incorporating deep 
contextualized word embeddings, parser ensemble, and 
treebank concatenation.

• Analysis shows that ELMo mainly improves the OOV
performance via learning better abstraction.

• We release the pre-trained ELMo at: https://github.com/HIT-
SCIR/ELMoForManyLangs

https://github.com/HIT-SCIR/ELMoForManyLangs

