学术报告中的一些设计技巧

报告人:刘一佳

导师:秦兵、车万翔

错误地利用 报告与论文结构的相似性

简介	模型	模型
模型	实验	结论

思考题

- 为什么做学术报告
 - 为了更好地交流
- 做怎样的学术报告
 - □ "向听众展示我对问题的深入理解"
 - 口"让听众明白我的论文中的技术"
 - 口"引起听众的兴趣"

思考题

- 为什么做学术报告
 - 为了更好地交流
- 做怎样的学术报告
 - □ "向听众展示我对问题的深入理解"
 - 口"让听众明白我的论文中的技术"
 - ☑ "引起听众的兴趣"

听众模型

理想中的听众

- 领域专家
- 已经读过你的论文
- 对于你的工作非常感兴趣

现实中的听众

- 来自其他领域
- 刚刚了解到你的工作
- 这个时段没什么可听的,恰巧发现这屋子网络比较好

类比审稿人模型

审稿

你以为审稿人应该是这样审稿的:

审稿人一定是专家,无所不知。打印出来,仔细研读揣摩数天,对于看不懂的地方反复推敲。即使你的英文写得极其糟糕、即使你的文章组织很混乱、即使你的表述很难看懂,审稿人花费了大量的时间后终于看懂了,他认为你的工作是有意义的,决定给你个border line或以上的分数。

审稿人实际上往往是这样审稿的:

他不一定是专家,一直忙于其他事,在deadline到来之前一天要完成 n篇。审稿时他往往先看题目、摘要,扫一下introduction(知道你做 什么),然后直接翻到最后找核心实验结果(做得好不好),然后 基本确定录还是不录(也许只用5分钟!)。如果决定录,剩下就是 写些赞美的话,指出些次要的小毛病。如果决定拒,下面的过程就 是细看中间部分找理由拒了。

第一印象定录护,5分钟内打动审稿人

12

类比审稿人模型

```
你以为审稿人应该是这样审稿的:
审稿人一定是专家,无所不知。打印出来,仔细研读揣摩数天,对于看不懂的地方反复推敲。即使你的英文写得极其糟糕、即使你的文章组织很混乱、即使你的表述很难看懂,审稿人花费了大量的时间后终于看懂了,他认为你的工作是有意义的,决定给你个border line或以上的分数。

审稿人实际上往往是这样审稿的:
他不一定是专家,一直忙于其他事,在deadline到来之前一天要完成的。审稿时他往往先看题目、搞要,扫一下introduction(知道你做
```

"You have **two minutes** to engage your audience before they start to doze." -- Simon Peyton Jones in *How to give* a great research talk

简介部分:展示最好的部分

Danqi Chen and Christopher Manning. 2014. A Fast and Accurate Dependency Parser using Neural Networks,第三页

模型部分:多用例子

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero, and Dan Klein. 2010. Painless Unsupervised Learning with Features, 第28到54页

模型部分:反例

Transition	Current State	Resulting State	Description
Drop	$[\sigma s_0, \ \delta, \ b_0 eta, \ A]$	$[\sigma s_0, \delta, \beta, A]$	pops out the word that doesn't convey any semantics (e.g., function words and
			punctuations).
MERGE	$\overline{[\sigma \bar{s}_0,\bar{\delta},\bar{b}_0 b_1 eta,A]}$	$[\sigma[s_0, \overline{\delta}, \overline{b_0}_\overline{b_1}[\beta, \overline{A}]]$	concatenates a sequence of words into a span, which can be derived as a named entity (name) or date-entity.
CONFIRM(C)	$\overline{[\sigma s_0, \delta, b_0]\beta, A}$	$[\sigma[s_0, \overline{\delta}, \overline{c}]\beta, \overline{A}]$	derives the first element of the buffer (a word or span) into a concept c.
ENTITY(c)	$\overline{[\sigma \bar{s}_0, \bar{\delta}, \bar{b}_0 \beta, \bar{A}]}$	$[\sigma[s_0, \overline{\delta}, \overline{c}]\beta, \overline{A} \cup \overline{\text{relations}}(c)]$	a special form of CONFIRM that derives the first element into an entity and builds the internal entity AMR fragment.
<u>N</u> EW(c)	$-[\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0]\overline{\beta}, \overline{A}] - \overline{\delta}$	$[\sigma[s_0, \overline{\delta}, \overline{c}]b_0 \overline{\beta}, A]$	generates a new concept c and pushes it to the front of the buffer.
LEFT(r)	$[\sigma s_0, \delta, b_0 \beta, A]$	$[\sigma s_0, \delta, b_0 \beta, A \cup \{s_0 \stackrel{\overline{r}}{\leftarrow} b_0\}]$	links a relation r between the top
RIGHT(r)	$[\sigma \mathtt{s}_0,\;\delta,\;\mathtt{b}_0 eta,\;A]$	$[\sigma s_0, \delta, b_0 \beta, A \cup \{s_0 \xrightarrow{r} b_0\}]$	concepts on the stack and the buffer.
Cache	$\overline{[\sigma \bar{s}_0, \bar{\delta}, \bar{b}_0]\beta, A}$	$[\sigma, s_0[\overline{\delta}, b_0]\overline{\beta}, A]$	passes the top concept of the stack onto the deque.
SHIFT	$-[\overline{\sigma} \overline{s}_0, \overline{\delta}, \overline{b}_0 \overline{\beta}, \overline{A}]$	$[\sigma[s_0 \delta]b_0, [], \beta, A]$	shifts the first concept of the buffer onto the stack along with those on the deque.
REDUCE	$\overline{[\sigma s_0, \overline{\delta}, \overline{b_0} \beta, \overline{A}]}$	$[\sigma, \overline{\delta}, \overline{b_0}]\beta, \overline{A}]^{}$	pops the top concept of the stack.

实验部分:图比表格好

LDC2014T12 Experiments

alignment F-score

Aligner	Alignment F1	Oracle's Smatch
	(on hand-align)	(on dev. dataset)
JAMR	90.6	91.7
Our	95.2	94.7

parser improvements

model	newswire	all
JAMR parser: Word, I	POS, NER, DEP	¢ I
+ JAMR aligner	71.3	65.9
+ Our aligner	73.1	67.6
CAMR parser: Word,	POS, NER, DEI	P
+ JAMR aligner	68.4	64.6
+ Our aligner	68.8	65.1

实验部分:图比表格好

信息元素的易理解度

冬

System	Setting	English-French	Chinese-English
	Model 4 s2t	7.7	20.9
	Model 4 t2s	9.2	30.3
GIZA++	Intersection	6.8	21.8
	Union	9.6	28.1
	Refined method	5.9	18.4
Cross-EM	HMM, joint	5.1	18.9
	Model 4 s2t	7.8	20.5
	+Model 4 t2s	5.6	18.3
	+link count	5.5	17.7
	+cross count	5.4	17.6
Vigne	+neighbor count	5.2	17.4
vigne	+exact match	5.3	-
	+linked word count	5.2	17.3
	+bilingual dictionary	-	17.1
	+link co-occurrence count (GIZA++)	5.1	16.3
	+link co-occurrence count (Cross-EM)	4.0	15.7

1: p	rocedure ALIGN(f, e)	
2:	$open \leftarrow \emptyset$	⇒ a list of active alignments
3:	$N \leftarrow \emptyset$	⊳ n-best list
4:	$a \leftarrow \emptyset$	begin with an empty alignment
5:	$ADD(open, \mathbf{a}, \beta, b)$	⇒ initialize the list
6:	while $open \neq \emptyset$ do	
7:	$closed \leftarrow \emptyset$	> a list of promising alignments
8:	for all a ∈ open do	
9:	for all $l \in I \times I - a$ do	enumerate all possible new links
10:	$\mathbf{a}' \leftarrow \mathbf{a} \cup \{I\}$	▷ produce a new alignment
11:	$g \leftarrow GAIN(f, e, a, l)$	
12:	if $g > 0$ then	> ensure that the score will increase
13:	$ADD(closed, a', \beta, b)$	update promising alignments
14:	end if	
15:	$ADD(\mathcal{N}, \mathbf{a}', 0, n)$	b update n-best list in the property of the prope
16:	end for	
17:	end for	
18:	$open \leftarrow closed$	▶ update active alignments
19:	end while	
20:	return N	return n-best list
21: e	nd procedure	

Shift-reduce parsing is efficient but suffers from parsing errors caused by syntactic ambiguity. Figure 3 shows two (partial) derivations for a dependency tree. Consider the item on the top, the algorithm can either apply a shift action to move a new item or apply a reduce left action to obtain a bigger structure. This is often referred to as conflict in the shift-reduce dependency parsing literature (Huang et al., 2009). In this work, the shift-reduce parser faces four types of conflicts:

Proof of Theorem 1: Let $\bar{\alpha}^k$ be the weights before the k'th mistake is made. It follows that $\bar{\alpha}^1 = 0$. Suppose the k'th mistake is made at the i'th example. Take z to the output proposed at this example, $z = \operatorname{arg\,max}_{y \in \mathbf{GEN}(x_i)} \Phi(x_i, y)$. $\bar{\alpha}^k$. It follows from the algorithm updates that $\bar{\alpha}^{k+1} = \bar{\alpha}^k + \Phi(x_i, y_i) - \Phi(x_i, z)$. We take inner products of both sides with the vector **U**:

 $\mathbf{U} \cdot \bar{\alpha}^{k+1} = \mathbf{U} \cdot \bar{\alpha}^k + \mathbf{U} \cdot \Phi(x_i, y_i) - \mathbf{U} \cdot \Phi(x_i, z)$ $\geq \mathbf{U} \cdot \bar{\alpha}^k + \delta$

where the inequality follows because of the property of U assumed in Eq. 3. Because $\bar{\alpha}^1 = 0$, and therefore $\mathbf{U} \cdot \bar{\alpha}^1 = 0$, it follows by induction on k that for all k, $\mathbf{U} \cdot \bar{\alpha}^{k+1} \geq k\delta$. Because $\mathbf{U} \cdot \bar{\alpha}^{k+1} \leq ||\mathbf{U}|| ||\bar{\alpha}^{k+1}||$, it follows that $||\bar{\alpha}^{k+1}|| \ge k\delta.$

40

实验部分:图比表格好

用图与例子来描述方法和实验

刘洋. 2014. 机器翻译学术论文写作方法与技巧

结论部分:新的展现形式

Hao Peng, Sam Thomson, and Noah A. Smith. 2018. Backpropagating through Structured Argmax using a SPIGOT,最后一页

设计原则

- 亲密性: 相关的元素应该 组织到一起
- 重复:相同的内容达到形式的统一
- 对比:如果两项不完全相同,就应使之截然不同
- 对齐: 使元素之间产生关联, 有关联的都应对齐

根据设计原则做幻灯片

Challenges and Contribution

- The first challenge is deriving an optimal alignment in ambiguous situations.
- The second challenge is recalling more semantically matched word-concept pair without harming the alignment precision.
- The final challenge which is faced by both the rule-based and unsupervised aligners is tuning the alignment with downstream parser learning.
- We proposed an enhanced aligner tuned by transitionbased oracle parser

加入空行提高相关 元素的亲密性

Challenges and Contribution

- The first challenge is deriving an optimal alignment in ambiguous situations.
- The second challenge is recalling more semantically matched word-concept pair without harming the alignment precision.
- The final challenge which is faced by both the rule-based and unsupervised aligners is tuning the alignment with downstream parser learning.
- We proposed an enhanced aligner tuned by transitionbased oracle parser

Challenges and Contribution

Challenges

- · deriving an optimal alignment in ambiguous situations.
- recalling more semantically matched word-concept pair without harming the alignment precision.
- tuning the alignment with downstream parser learning

Contribution

· an enhanced aligner tuned by transition-based oracle parser

相同内容使用相同样式 即提高了**一致性**又形成 了必要的**对比**

避免不对齐

"乱"的原因:视线跳动过多

Experiments

Alignment F1

Aligner

We conduct experiments on LDC2014T12

Oracle's Smatch

 We evaluate the alignment F-score and Smatch of resulted parsers

	(on mand ungil	(on dev.	uniuset)
JAMR	90.6	91.	7
Our	95.2	94.7	
model	1	newswire	all
JAMR pa	arser: Word, POS	, NER, DEF)
+ JAN	IR aligner	71.3	65.9
+ Our	aligner	73.1	67.6
CAMRI	parser: Word, PO	S, NER, DE	P
+ JAN	IR aligner	68.4	64.6
+ Our	aligner	68.8	65.1

(on hand-align) (on dev. dataset)

model	newswire	all
Our single parser: Word	donly	
+ JAMR aligner	68.6	63.9
+ Our aligner	69.3	64.7
Our single parser: Word	d, POS	
+ JAMR aligner	68.8	64.6
+ Our aligner	69.8	65.2
Our ensemble: Word or	nly + Our aligner	
x3	71.9	67.4
x10	72.5	68.1
Our ensemble: Word, P	OS + Our aligner	
x3	72.5	67.7
x10	73.3	68.4

"乱"的原因:视线跳动过多

Experiments

- We conduct experiments on LDC2014T12
- We evaluate the alignment F-score and Smatch of resulted parsers

	(on hand-align)	(on dev.	dataset)
JAMR	90.6	91	.7
Our	95.2	94.7	
model		newswire	all
JAMR pa	arser: Word, POS	, NER, DEI	P
+ JAN	IR aligner	71.3	65.9
+ Our	aligner	73.1	67.6
CAMRI	parser: Word, POS	S, NER, DE	P
+ JAN	IR aligner	68.4	64.6
+ Our	aligner	68.8	65.1

Aligner Alignment F1 Oracle's Smatch

model	newswire	all
Our single parser: Word	only	
+ JAMR aligner	68.6	63.9
+ Our aligner	69.3	64.7
Our single parser: Word	l, POS	
+ JAMR aligner	68.8	64.6
+ Our aligner	69.8	65.2
Our ensemble: Word or	nly + Our aligner	
x3	71.9	67.4
x10	72.5	68.1
Our ensemble: Word, P	OS + Our aligner	
x3	72.5	67.7
x10	73.3	68.4

"乱"的解法:重新组织内容

Experiments

- We conduct experiments on LDC2014T12
- We evaluate the alignment F-score and Smatch of resulted parsers

Aligner	Alignment F1	Oracle's	Smatch
	(on hand-align)	(on dev.	dataset)
JAMR	90.6	91.	7
Our	95.2	94.7	
model	n	ewswire	all
JAMR pa	rser: Word, POS,	NER, DEP)
+ JAM	R aligner	71.3	65.9
+ Our aligner		73.1	67.6
CAMR p	arser: Word, POS	, NER, DE	P
+ JAM	R aligner	68.4	64.6
+ Our	aligner	68.8	65.1

model	newswire	all
Our single parser: Word	donly	
+ JAMR aligner	68.6	63.9
+ Our aligner	69.3	64.7
Our single parser: Word	d, POS	
+ JAMR aligner	68.8	64.6
+ Our aligner	69.8	65.2
Our ensemble: Word or	nly + Our aligner	
x3	71.9	67.4
x10	72.5	68.1
Our ensemble: Word, P	OS + Our aligner	
x3	72.5	67.7
x10	73.3	68.4

LDC2014T12 Experiments

alignment F-score

Aligner	Alignment F1	Oracle's Smatch
10.574	(on hand-align)	(on dev. dataset)
JAMR	90.6	91.7
Our	95.2	94.7

parser improvements

model	newswire	all
JAMR parser: Word,	POS, NER, DEP	K.
+ JAMR aligner	71.3	65.9
+ Our aligner	73.1	67.6
CAMR parser: Word,	POS, NER, DEI	P
+ JAMR aligner	68.4	64.6
+ Our aligner	68.8	65.1

视线跳动在论文写作中的作用

刘洋. 2014. 机器翻译学术论文写作方法与技巧

参考文献

- Simon Peyton Jones: How to give a great talk
- 写给大家看的设计书
- 机器翻译学术论文写作方法与技巧
- 知乎专栏: 跟我学个P

总结

祝大家产出优秀的学术工作