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“You have two minutes to engage your audience before

they start to doze.” -- Simon Peyton Jones in How to give
a great research talk
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(Zhang and Nirve 2011, Martins et al 2013)

Our Work

* Aneural network based dependency parser!

Parsing on English Penn Treebank (§23):

Unlabeled attachment score (UAS) sent/s
Thansition MaltParser (greedy) 89.9 > o 560 v> i
-based Our Parser (greedy) 92.0 1013
Zpar: beam = 64 92.9 29
Graph MSTParser 92.0 12
-based TurboParser 93.1" 31"
A Fast and Accurate Dependency Parser using Neural Networks 3

Dangl Chen and Christopher Manning. 2014. A Fast and Accurate Dependency
Parser using Neural Networks, 28=T1
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Berkeley Berkeley Berkeley
EM with Features EM with Features EM with Features
N LP N LP N LP
Initialize weights w Initialize weights w
repeat repeat
e g . @ Compute expected counts e @ Compute expected counts e
Initialize weights w repeat repeat
I'epeat Compute é"(v‘v, e) Compute £(w, e)
L (W) Sompck]lil:]hVUvs‘/, e) L (W) Compute Vﬁ(w, e)
— (w. l(w,e), Vi(w,e)) w — climb(w, {(w, e), V{(w,e))
. ComPUte eXpeCted counts e until convergence until convergence
repeat @ Transform w to 6 @ Transform w to 6
until convergence until convergence
2 Compute /(w, e)
«
| & Compute V{(w,e)

w « climb(w, {(w, e), VL(w,e))
until convergence
@ Transform w to 6
until convergence

Berkeley

EM with Features

N LP
Initialize weights w
repeat
@ Compute expected counts e
repeat
Compute £(w, €)
| Compute V{(w,e)
w — climb(w, {(w, e), V{(w,e))
until convergence
@ Transform w to 8
until convergence

Berkeley

EM with Features

Initialize weights w
repeat
@ Compute expected counts e
repeat
Compute /(w, e)
' Compute V{(w,e)
w — climb(w, {(w,e), Vi(w,e))
until convergence
@ Transform w to 6
until convergence

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Coté, John DeNero, and Dan Klein.

2010. Painless Unsupervised Learning with Features, Z528%5471
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Transition  Current State Resulting State Description
DROP  [o|s0, 9, bo|S3, A] lo|so, 0, B, A pops out the word that doesn’t convey
any semantics (e.g., function words and
punctuations).
~ MERGE [o]so, 6, bo[b1|B, A] [o[so, 0, bo_b1[B, A] concatenates a sequence of words into a

span, which can be derived as a named
entity (name) or date—-entity.

- CONFIRM(c) [o|so, 6, bo[B, A] ~  [o[so, 0, c[B, A] derives the first element of the buffer (a -
word or span) into a concept c.
- ENTITY(c) [o]so, 0, bol3, A] ~  [o[so, 9, c[B, AUrelations(c)]  a special form of CONFIRM that derives

the first element into an entity and builds
the internal entity AMR fragment.

" NEW(c) [o|so, 0, bolB, A ~  [o[so, 0, c[bo|B, 4] generates a new concept ¢ and pushes it -
to the front of the buffer.
~ LEFT(r) [o]se, & bolB, A]  [o]se, 6, bo|B, AU{so < bo}] links arelation r between the top
RIGHT(r) [o|so, 6, bol|B, A] [o]s0, 6, bo|B, AU{so = bo}] concepts on the stack and the buffer.
- CACHE [o]so, 6, bolB, A] ~ [0, so[0, bo|B, A] passes the top concept of the stack onto
the deque.
- SHIFT [o]so, 8, bolB, A] ~ [o]sold]bo, [], B, A] shifts the first concept of the buffer onto -

the stack along with those on the deque.

REDUCE [o|so, 0, bo|B, A] lo, 0, bo|B, A] pops the top concept of the stack.
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Aligner Experiments:

Rk20lA 1Lz Bxperiments Two Open-sourced AMR Parsers

¢ alignment F-score * parser improvements
70 70
model newswire all 69 69
JAMR parser: Word, POS, NER, DEP
Aligner  Alignment F1  Oracle’s Smatch ¥ PEEL: nr . NER 68 68
hanidali (6irdev:datisat +JAMR aligner 7133 65.9
JAMR {on ]‘:)':) : lgn) (on e:)AI 7‘1 psel) + Our aligner 73.1 67.6 67 4% 67
; 3 CAMR parser: Word, POS, NER, DEP 66 ; 66
Our 95.2 94.7 5
+ JAMR aligner 68.4 64.6 05
+ Our aligner 68.8 65.1 65 65 2
64 64
63 63
JAMR (Flanigan14) CAMR (Wang15)

Baseline m+our alignment Baseline m+our alignment
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step | action | rule stack coverage prew— Setting English-French _ Chinese_English
Model 4 2t 77 209
0 Model 4 25 92 303
GIZA++  Intersection 68 218
; Union 9.6 281
1| s | m | (THe President wit) . Refined method 59 184
. CrossEM  HMM, joint 51 189
2| S | n | [The President wil [visit eecoo0e Model 42t 78 205
. +Model 4 25 56 183
. A +link count 55 177
3| R [The President wil visit +cross count 54 1756
- +neighbor count 52 174

NN —~ Vigne +exact match 53 .

4| S | r| [Tho President will visit] [London in April] +linked word count 52 17.3
+bilingual dictionary - 171
—~ A N +link co-occurrence count (GIZA++) 5.1 163
¥ | & [T Preatot wi vidt London b Apel] seevees +link co-occurrence count (Cross-EM) 40 157

s

*
Algorithm 1 A beam search algorithm for word alignment
1: procedure ALIGN(E, )
AL(6) 2 open 0 > alst of active alignments
¥ NeD > n-best list
00y & ac > begin with an empty alignment
5: ADD(open,a, B, b) b initialize the list
I © © 6 whileopen # 0 do
= E i). i 7 closed ) & a list of promising alignments
= E P(y|x'";0)pr(x",y) 8 forall a € open do
= 5 9 forall [ ¢ ] x[—ado > enumerate all possible new links
i=1 yey(x®) 10 ¥ —au (]} b produce a new alignment
1 ¢ — GAIN(e,a,]) > compute the link gain
— P(x y; 0)¢ (x y) 12 ifg> 0 then b ensure that the score will increase
DA k\ X,
13 ADD(closed, a, B,b) > update promising alignments
xXEX yeY(x) 14: end if
15 ADD(N, a',0,1) > update n-best list
I 16 end for
; 17: end for
i
= E Ey(x,0(Pk (x( ), ¥)] — Exy;0(@x(x,y)] 1 open — dlosed > update active alignments
19 endwhile
2 retumA > return n-best list

21: end procedure

*kkk *kkkk
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Shift-reduce parsing is efficient but suffers from
parsing errors caused by syntactic ambiguity. Fig-
ure 3 shows two (partial) derivations for a depen-
dency tree. Consider the item on the top, the algo-
rithm can either apply a shift action to move a new
item or apply a reduce left action to obtain a big-
ger structure. This is often referred to as conflict
in the shift-reduce dependency parsing literature
(Huang et al., 2009). In this work, the shift-reduce
parser faces four types of conflicts:

IEX

* %k

Proof of Theorem 1: Let a* be the weights

befule the k’th mistake is made. It follows that

= 0. Suppose the k’th mistake is made at
t,he 7 t‘h example. Take z to the output pwposod
:lt this exampls = argmax,cGEN(s;) ®(%i, ¥

I( follows from the algorithm updates that
”‘ =a" 4 O(zi,yi) — P(xi,z). We take inner
pmdur(s of both sides with the vector U:
U-&*' =U-3"+U-®(zi,y:) — U - ®(xi, 2)

>U-a"+94

where the inequality follows because of the prop-
erty of U assumed in Eq. 3. Because @' = 0,
and therefore U - @' = 0, it follows by induc-
tion on k that for all k, U - a*! > ks. Be-
cause U - ak+! < ||U|| [|a**!]|, it follows that

|@*+1|| > ko.
i

*kkkkk
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Conclusion

Problem Method Results

SPIGOT

Shareholders took their money

lc Intermediate parser @

arg max

N
Shareholders took their money
Alayer?
aver 0 Downstream task / VL ?

Loss L

g

°
a
. g
Ed 3
H E
i g
] 2
&<k g
4 3
g
g
i
g

Hao Peng, Sam Thomson, and Noah A. Smith. 2018. Backpropagating through
Structured Argmax using a SPIGOT, &/5— It
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Challenges and Contribution

* The first challenge is deriving an optimal alignment in
ambiguous situations.

* The second challenge is recalling more semantically
matched word-concept pair without harming the
alignment precision.

* The final challenge which is faced by both the rule-based
and unsupervised aligners is tuning the alignment with
downstream parser learning.

* We proposed an enhanced aligner tuned by transition-
based oracle parser

Challenges and Contribution

* Challenges
* deriving an optimal alignment in ambiguous situations.

* recalling more semantically matched word-concept pair without
harming the alignment precision.

* tuning the alignment with downstream parser learning

« Contribution

IANZITIRETHRK

TREORBME

Challenges and Contribution

* The first challenge is deriving an optimal alignment in
ambiguous situations.

* The second challenge is recalling more semantically
matched word-concept pair without harming the
alignment precision.

* The final challenge which is faced by both the rule-based
and unsupervised aligners is tuning the alignment with
downstream parser learning.

* We proposed an enhanced aligner tuned by transition-
based oracle parser

HEE A E AR
RVRR T —BUEX AL
T BB

* an enhanced aligner tuned by transition-based oracle parser
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r aligner algorithm

* Enhancing aligner with
! rich semantic resources

t Producing multiple
| alignments

Input: An AMR graph with a set of graph fragments C';
a sentence W a set of matching rules Pas: and
a set of updating rules Py;.

Output: a set of alignments A.

forc e Cdo

L A0
for prr € Py do
for w, . «— spans(W) do

force Cdo
if par(c,ws ) then
L A, + A U (s, e nil);

8 updated + true :
9 while updated is true do

updated + false:
for py; € Pyy do
forc,d € C x Cdo
for (s,e,d) € Al do
if pu(c,ws.e) A (s,e,c’) ¢ Ac then
A .+ A U(s,ec):
updated « true;

A0
for (a1, ...,ac) € CartesianProduct( A, ..., Aic|) do
legal + true;
fora € (ay,....a.) do

(s,e,c') «a;

(s',¢',d) « a.;

if s #s' Ae # e then

L legal + false ;

if legal then
| A+ Au(ay,..,ac);
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Experiments

* We conduct experiments on LDC2014T12

* We evaluate the alignment F-score and Smatch of
resulted parsers

Aligner  AlignmentF1  Oracle’s Smatch model newswire all
(on hand-align) (on dev. dataset) Our single parser: Word only
JAMR 90.6 91.7 +JAMR aligner 68.6 63.9
Our 95.2 94.7 + Our aligner 69.3 64.7
~Oursingle parser: Word, POS
model newswire all s JAMR. aligner ge.8 64(2
JAMR parser: Word, POS, NER, DEP  —— o dligner 0562
+ JAMR aligner 71.3 65.9 Our ensemble: Word only + Our aligner

+Ouraligner B 616 s G

CAMR parser: Word, POS, NER, DEP " Our ensemble: Word, POS + Our aligner

+ JAMR‘aligncr 68.4 64.6 3 7.5 61.7
+ Our aligner 68.8 65.1 x10 733 68.4
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Experiments

i T TTTTTTTTT T T Tt T T !
+* We conduct experiments on LDC2014T12 :
1 ) 1
. * We evaluate the alignment F-score and Smatch of
\  resulted parsers i
- S S O S O O O O o e O O O e e o o e e e o e ]
' |
| Aligner  AlignmentF1  Oracle’s Smatch model newswire all 1
s (on hand-align) (on dev. dataset) Our single parser: Word only :
1 JAMR 90.6 91.7 +JAMR aligner 68.6 639
| Our 95.2 94.7 + Our aligner 69.3 64.7 |
] Our single parser: Word, POS ;
r";;'(:a;‘“‘m““:;;;:;““;ﬁ - J_A MR aligner 68.8 64.6 !
i .- + Our aligner 69.8 652
: JAMR patier; Word, ROS, NER, DEF : Our ensemble: Word only + Our aligner '
' +JAMR aligner 71.3 659 s ‘ ) ol :
! + Our aligner 73.1 67.6 1 ! 1 9 B
| R cor Word POS NER DEP -~ T 725 68l |
 CAMR pdr.ser.. Word, POS, NER, DEP : Our ensemble: Word, POS + Our aligner :
! + JAMR aligner 68.4 64.6 , 3 72.5 617 !
'+ Our aligner 68.8 65.1 E x10 733 684 !
! M e e e e e e e 1




A MERE  EMELARE

Experiments LDC2014T12 Experiments

* We conduct experiments on LDC2014T12 * alignment F-score * parser improvements
* We evaluate the alignment F-score and Smatch of e W
/SWI 4
resulted parsers . . - — JAMR parser: Word, POS, NER, DEP
Aligner  Alignment F1  Oracle’s Smatch + JAMR aliener 713 65.9
(on hand-align)  (on dev. dataset) o '\li:vn;r 7;"1 676
Aligner Allgnmenl'Fl Oracle’s Smatch mode_l newswire all JAMR 90.6 91.7 CAMR parser: Word, POS, NER, DEP
(on hand-align) (on dev. dataset) Our single parser: Word only Our 95.2 94.7 + JAMR aligner 68.4 64.6
JAMR 90.6 91.7 +JAMR aligner 68.6 63.9 O ulignér 63.8 65.1
Our 95.2 94.7 __ +Ouraligner 693 647 ' =
Our single parser: Word, POS
o meem all +JAMR aligner 68.8 64.6
fhee . TS WIS 4 + Our aligner 69.8 65.2
JAMR parser: Word, POS, NER, DEP 5 e Wod o s Oucal
+JAMR uligner 713 65.9 ur ensembole: ord only + Our d:gl]el’
Our aligner 73.1 67.6 . i i
o H AL LIBIET - o e R 2 x10 72.5 68.1

CAMR parser: Word, POS, NER, DEP " Our ensemble: Word, POS + Our aligner
+ JAMR aligner 68.4 64.6 3 75 617

+ Our aligner 68.8 65.1 x10 733 68.4
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Tree-to-String Alignment Template for Statistical Machine Translation B —

Yang Liu, Qunfliu, and Shouxun Lin
Institute of @lgputing Technology Xinyan Xiao ! Yang Liu ' Young- wang’ Qun Liu Shouxun Lin !
{Key Lab. of Intelligent Info. Processing W ‘HILab Convergence Technology Center
Institute of Computing Technology C&] Business
Chinese Academy of Sciences
ayan, 1t )

cijing, 100080, China
e

, sxlin}@ict.ac SKTelecom

Abstract substrings thatare common enough to be observed Abatruck . —
£ on training data. However, a key limitation of — —
o 8 o) phrase-based models isthat they fil to model e- As okenization s usually ambiguous for **
based on tree-to-string aligumglls template ordering at the phrase level robustly. Typically, many natural languages such as Chin
(TAT) which describes the gfgnment be- ‘phrase reordering is modeled in terms of offset po- and Korean, tokenization errors might po-
fween s, sours parss) irggand. & (et sitions at the word level (Koehn, 2004; Och and tentially introduce translation mistakes for
suring. A TAT is capallf of generating Ny, 004), making little or no direct use of syn- ranslation systems that rely on I-best to- 4% |
both terminals and ooy ssmdper e information. kenizations. While using latices to of  tare s
e ol o e b Recent research on statistical machine transla- for more aliernatives to translation sys-
ot Ths mol sl ST ha load o the devlopmentof syax-based tems have clegantly alleviated this prob- g
e L o o models. Wu (1997) proposes Inversion Trans- lem, we take a further step to tok
il ey st signed s o irlon Gtamitc, traaig frasiliioh se'x a0 and translate jointy. Tegin e Figme1: ) Sepuntc wkmmirmion md wanltion i )
oo e B aoure®  coss of parallel paring of the source and tar- o ooy 4 mbined to SO "
e e ooyl e T e e, 8 language via 8 synchronized grammar. Al form words i dif as input, our
e el e e s o shawi et al. (2000 represent each production in joint decoder producgs a tokenization on  2006; Shen et al,, 2008) thattake & sring as input
Py i s parallel dependency tree as a finite transducer. the source side andffl wanslation on the  and tre-based systems (Liu etal, 2006; Mietal,
get 1{:}"& ur ’“"'“ﬁ"“ . oW that Melamed (2004) formalizes machine translation target side simulianfibusly. By integrat- 2008) that take 2 tree as input. Note that a tree-
':‘ P'h‘“"‘;“‘““‘ "V;'u;“" ly d"“'::" problem as synchronous parsing based on mult- ing tokenization anlranslation features  based system still needs to frst tokenize the input
‘_:r":;mfb‘:’! e M otinan decods text grammars. Graehl and Kaight (2004) describe in a discriminative flmework, our joint sentence and then obtain a parse tree or forest of
training and decoding algorithms for both gen- decoder outperformfihe baseline wans-  the sentence. As shown in Figure 1(2), we refer to
1 Introduction eralized tree-to-tree and tree-to-string transduc- lation systems usingll-best tokenizations  this pipeline as separate tokenization and transla-
i ers. Chiang (2005) presents a hierarchical phrase- and latices significaflly on both Chinese-  tion because they are divided into single steps.
Phrase-based_ transltid} models (Marcu and  baged model that uses hierarchical phrase pais, English and KorearffChinese tasks. In- ‘As tokenization for many languages is usually
Wong, 2002; Kochn ef@jl., 2003; Och and Ney,  which are formally productions of a synchronous terestingly, as a toidlnizer, our joint de- ‘ambiguous, SMT systems that separate tokeniza-
2004), which go beyorf§ the original IBM trans-  coqtex.free grammar. Ding and Palmer (2005) coder achieves signflicant improvements. tion and translation suffer from a major drawback:
lation models (Bro -+ 1993) ! by model-  propoge a syntax-based translation model based over monolingual Ciffnese tokenizers. tokenization errors potentially introduce transla-
ing translatons of phr¥§s rather than individual gn 5 probabilistc synchronous dependency in- . tion mistakes.  As some languages such as Chi-
‘words, have been suggested {0 be the sate-ofthe- sert grammar, a version of synchronous gram- 1" Introduction ‘nese have 1o spaces in their writing systems, how
art in statistical machine translation by empirical  mars defined on dependency trees. All these ap- Tokenization plays an inflortant rol in statistcal 1o segment sentences into appropriate words has
evaluations proaches, though different in formalism, make use ‘machine translation ( use tokenizing a 2 direct impact on translation performance (Xu et
In phrase-based models, phrases are usually  of synchronous grammars or ree-based transduc- source-language sent always the first siep L., 2005; Chang et al., 2008; Zhang et al, 2008).
stings of adjacent words instead of syntactic €on- tion.rules to model both source and target lan- in SMT systems. B the type of input, Mi _In addition, athough agglutinatve languages such
stituents, excelling at capturing local reordering  gyages, and Huang (2008) distinguish between two cat- as Korean incorporate spaces between “words”,
and performing translatons that are localized ©© * pn e class of approsches make use of syn- cgories of SMT systems * string-based sysiems  which coasist of multiple mocphemes, the gra-
e i oo v e s e s sk 0t information in the targe laguage aloe, (Koehn et al., 2003; Chiang, 2007; Galley et al, ularity is 100 coarse and makes the training data
rom that paper.  soece a1/ = f1y-- -+ 8

ol g e g1 = | weatingthe ranslation roblem a a parsng prob-
e, 11t e o h et sing, s J i e engs 1o Yamada and Kaight (2001) use a parsr in
ofthe soure string. the target language to train probabilities on a set of

1200
1200-1208,

609 Bejing, August 2010

ence on Comp s 609-616,
Sydney, Tuy 2006, ©2006 Associaon for Computationl Linguistics
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(Zhang and Nirve 2011, Martins et al 2013)

Our Work

¢ Aneural network based dependency parser!

Parsing on English Penn Treebank (§23):

Unlabeled attachment score (UAS) sent/s
Transition MaltParser (greedy) 89.9> o 560 v> -
-based Our Parser (greedy) 92.0 1013
Zpar: beam = 64 92.9° 29
Graph MSTParser 92.0 12
-based TurboParser 93.1" 31
A Fast and Accurate Dependency Parser using Neural Networks 3
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Berkeley
EM with Features
NLP
Initialize weights w
repeat
@ Compute expected counts e
repeat

Compute V£(w, €)
w — climb(w, {(w, e), V{(w,e))
until convergence
@ Transform w to 6
until convergence

' Compute £(w, e)
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Conclusion

Problem Method Results

SPIGOT

Shareholders took their money

lo Intermediate parser

argmax
Sharefiolders took théir moriey
At lo Downstream task /7, ?
Loss L
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Challenges and ContribL.. 2> *
i Challenges » E/E

* deriving an optimal alignment in ambiguous ¢

« recalling more semantically matched word-concept pair without
harming the alignment precision.

* tuning the alignment with downstream parser XTJ’ I:I:

* Contribution

* an enhanced aligner tuned by transition-base X_J_i
T
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